
 
NOVA  
University of Newcastle Research Online 

nova.newcastle.edu.au 
 

 

Urrutia G, Delgado RA, Agüero JC, 'Low-order control design using a novel rank-
constrained optimization approach'. Published in 2016 Australian Control Conference, 
AuCC 2016, Newcastle, NSW (2016) 

Available from: http://dx.doi.org/10.1109/AUCC.2016.7867929 

 
 

 
 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 

work in other works. 
 
 

Accessed from: http://hdl.handle.net/1959.13/1344022 

 

 



Low-order Control Design Using a Novel Rank-constrained
Optimization Approach

Gabriel Urrutia1, Ramón A. Delgado2 and Juan C. Agüero1,2

Abstract— A recent equivalent representation of rank con-
straints is used to design a low-order controller with prescribed
degree of stability. We solve an optimization problem involving
linear matrix inequalities and rank contraints. We illustrate the
potential of the proposed approach by comparing with similar
approaches available in the literature.

I. INTRODUCTION

Rank-constrained optimization has gained increased atten-
tion in the last decades. Recent advances in convex opti-
mization and the development of easy-to-use optimization
software have helped to increase the usage of such software
within the systems and control community. The success
of nuclear norm, log-det and trace heuristics, see e.g. [7],
[8], in some problems have motivated several researchers
to formulate a large number of engineering problems in
terms of optimization problems that include rank constraints.
A classic example of such engineering problems arises in
system identification, where the order of a rational system is
equal to the rank of an infinite dimensional Hankel matrix
[9]. Another example is Factor Analysis (see e.g. [5]), where
the number of latent factors is equal to the rank of a
covariance matrix.

Although heuristics such as the nuclear norm provide a
convenient way to address rank constraints in optimization
problems, there is an inherent loss of performance in the
use of this heuristic [16]. Moreover, most heuristics consider
the rank constraint as a soft constraint, i.e the obtained
solution may violate the rank constraint. This approach to
deal with rank constraints may be unsatisfactory in some
applications. This has motivated the development of methods
that consider the rank constraint as a hard constraint, see
e.g. [14], [13], [4]. These methods are based on the notion
of equivalent representations of a rank constraint. These
equivalent representations are aimed at overcoming some
of the undesirable features of the rank function, namely,
non-linearity, non-smoothness and non-convexity of the rank
function. In this paper, we focus on the rank-constraint
representation described in [4] that allows to solve rank-
constrained optimization problems within the framework of
nonlinear programming.
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of Electronic Engineering, Universidad Técnica Federico Santa
Marı́a, Chile. This work was partially supported by FONDECYT
through grant No 1150954 and the Advanced Center for
Electrical and Electronic Engineering (AC3E, Proyecto Basal
FB0008), Chile. gabriel.urrutia@alumnos.usm.cl,
juan.aguero@usm.cl
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In the rank-constraint representation in [4] the value of
the rank in the rank constraint, say r, is controlled by the
value of the trace of an auxiliary matrix. These presents a
major advantage over other rank-constraints representations
where the value of r is controlled by the size of auxiliary
matrices, see e.g. [15] or by including a constraint that is non-
convex on r, see e.g. [14], [13].This feature may be useful
in problems where the value of the rank to be constrained is
unknown a priori.

In this paper we apply the rank-constraint representation
described in [4] to a Reduced Order Output Feedback stabi-
lization problem and address variants of the same problem.
We then perform a numerical comparison of the proposed
approach against state-of-the-art alternative methods.

Notation and basic definitions: rank {A} denotes the
rank of a matrix A. λi(A) denotes the i-th largest eigenvalue
of a symmetric matrix A and σi(A) denotes the i-th largest
singular value of a matrix A. A � 0 denotes that A is positive
semidefinte, and A � B denotes that A−B � 0. We denote
the transpose of a given matrix A as AT . Sn denotes the set
of symmetric matrices of size n× n.

II. REDUCED ORDER OUTPUT FEEDBACK

To illustrate the features of the rank-constraint represen-
tation in [4] we apply it to a rank-constrained optimization
problem. In particular, we focus in the problem of Reduced
order output feedback stabilization. In this section, we de-
scribed the approach proposed in [11] that uses Linear Matrix
Inequalities (LMI) to find a reduced order controller for
the output feedback stabilization problem. A benefit of this
formulation is that it allows us to define an optimization
framework to solve the problem of interest.

Consider a continuous time, linear time invariant (LTI)
system

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) (2)

where x ∈ Rn is the system state, u ∈ Rm is the control
signal and y ∈ Rp is the measured output. The controller is
given by [

ẋc(t)
u(t)

]
= K

[
xc(t)
y(t)

]
(3)

where K ∈ R(nc+m)×(nc+p) and xc ∈ Rnc is the controller
state.

Define Ã =

[
A 0
0 0nc

]
, B̃ =

[
0 B
Inc 0

]
and C̃ =[

0 Inc

C 0

]
. The following lemma establishes necessary and



sufficient conditions to make sure that the real part of the
closed loop system ( ˙̃x = Ax̃ = (Ã+ B̃KC̃)x̃) poles are on
the left of s = −α.

Lemma 1: (see [11]) Let A be a given square matrix and
α be a given positive scalar. Then the following statements
are equivalent:

1) The system ˙̃x = Ax̃ is α-stable (with prescribed degree
of stability α).

2) There exists a matrix Y � 0 such that (A+αI)TY +
Y(A+ αI) ≺ 0.

Note that statement 2 of Lemma 1 involves a bilinear form
of the two unknown matrices Y and K (since the closed loop
matrix A depends on K). In [11], the unknown controller
terms are eliminated from the bilinear form and necessary
and sufficient conditions for the existence of an α-stabilizing
controller of order nc are found. In [11] the existence of a
α-stabilizing controller of order nc for a given α > 0 can
be tested by solving a set of LMI subject to rank constraint
as described below.

Consider a system defined as in (1)-(2) and a given scalar
α > 0. Solving the following feasibility problem for X � 0
and Y � 0 assures that an α-stabilizing controller of order
nc exists (see [11]).

P0 : Find X,Y ∈ Sn

s.t. −B⊥(AX +XAT + 2αX)B⊥T � 0

− CT⊥(Y A+ATY + 2αY )CT⊥T � 0[
X I
I Y

]
� 0

rank

{[
X I
I Y

]}
≤ n+ nc

where B⊥ is a matrix of maximal rank such that its rows
are orthogonal and B⊥B = 0. Similar conditions hold for
CT⊥.

Solution matrices X and Y of P0 are related in the
following way to statement 2 of Lemma 1 (see [11] for
details):

Y =

[
Y Y12
Y T12 Y22

]
and Y−1 =

[
X X12

XT
12 X22

]
where X22, Y22 ∈ Rnc×nc . Thus, by solving P0 the unknown
α-stabilizing controller K can be found by solving the LMI
found in statement 2 of Lemma 1 as described below.

Consider the Matrix Inversion Lemma, and take the eigen-
value decomposition X−Y −1 = V ΛV T , where Λ is a diag-
onal matrix whose entries are the eigenvalues ordered in de-
creasing order. Define R = V (:, 1 : λnc

)diag(λ
1/2
1 , ..., λ

1/2
nc )

and X̃ =

[
X R
RT I

]
. A controller K that fulfills statement 2

of Lemma 1 is found by solving the following optimization
problem:

PK : max
γ∈R,K

γ (4)

s.t. (Ã+ B̃KC̃)X̃ + X̃(Ã+ B̃KC̃)T + 2γX̃ ≤ 0

Solution γ of problem PK represents a lower bound for
the stability degree of the closed loop system ˙̃x = Ax̃ [18].

A Newton-like method to solve problems involving rank
constrained linear matrix inequalities (LMI) is presented
in [18]. In particular they use it to solve problem P0. It
is important to note the cited approach locally solves the
problem. The algorithm is implemented in the LMIRank
solver that is freely distributed by the authors.

A. Rank Minimization Approach

In this section we describe the method presented in [20] to
solve a similar problem. This is mentioned for comparison
purposes only. In [20] an iterative rank minimization proce-
dure is presented and used for (locally) solving the similar
problem of finding a stabilizing controller of a certain order
(stability degree is not a constraint). The algorithm in [20]
reduces the rank of a matrix constraint in a convex set. In
[20], the problem of determining the existence of a low order
controller is treated (for a system described as in (1)-(2)).

Lemma 2: (see [20],[10]) There exists a stabilizing output
feedback law of order k if and only if the global minimum
of the rank minimization problem is less than n+ k.

Prk : min
W1,W2,σ

rank(

[
W1 I
I W2

]
) (5)

s.t. AW1 +W1A
T ≺ σBBT

ATW2 +W2A ≺ σCTC[
W1 I
I W2

]
� 0

σ > 0 (6)

where W1,W2 ∈ Sn and σ ∈ R+.
Note that problem Prk represents a particular case of P1.

This can be seen by taking limα→ 0+ and by considering
that B⊥B = 0 (for further insight, see section 2.6 of [2]).

Note also that problem Prk must incorporate a stop
condition. This is due to the existence of an infinite class
of controllers satisfying the stated conditions. In the iterative
rank minimization algorithm proposed in [20], the program
is stopped once a desired order, i.e. rank, is achieved.

In this paper we implement the cited approach to solve
problem P0 and compare its performance with other meth-
ods.

III. EQUIVALENCE BY RANK CONSTRAINT
REPRESENTATION

In this section we use the approach presented in [4] to
find a equivalent representation of problem P0. The need of
equivalent representations for rank constraints arise because
the rank function has several features that are undesirable
in optimization problems. In particular, the rank function is
non-smooth, non-linear and non-convex. In the optimization
literature, smoothness and convexity are widely exploited,
and the lack of such features in the rank function limits
the tools that can be used in the to solve the optimization
problem. Thus, equivalent representations aim at overcoming



at least one of these undesirables features of the rank func-
tion. Recently, equivalent representations have been utilized
to avoid the direct treatment of rank constraints ([15], [4],
page 241 of [3]).

The following result describes the equivalent representa-
tion of a rank constraint presented in [4].

Lemma 3: Let G ∈ Rm×n, then the following expressions
are equivalent

(i) rank {G} ≤ r
(ii) ∃W ∈ Φn,r, such that GW = 0m×n

where

Φn,r = {W ∈ Sn, 0 �W � I, trace(W ) = n− r} (7)
Proof: See [4].

The result from Lemma 3 can be seen as a generalization
of the one provided in [3] (the former can be used on rank
constraints over real matrices of all sizes). An advantage of
Lemma 3 is that it represents a rank-constraint in a form
that can be used for optimization purposes. The constraints
imposed by the set Φn,r can be handled by Semidefinite
Programming. However, it is well known that computations
that considers bilinear matrix constraints are fundamentally
more difficult to those over linear matrix inequalities (see
e.g. [22]). In this paper, the condition, GW = 0, will be ad-
dressed in the context of nonlinear programming by utilizing
the optimization software BARON [19][21] which allows us
to solve problems with this type of bilinear constraints and
in addition to obtain a global solution.

This approach to deal with rank constraints has been
applied in several framework including: Model Predictive
control [1], Factor Analysis [5] and to nonlinear system
identification [6].

The following result presents an equivalent representation
of problem P0.

Theorem 1: Let W ∈ S2n, 0 � W � I, trace(W ) =
n−nc, then feasibility problem P0 is equivalent (in the sense
that has same global optimum) to the following problem

P1 : Find X,Y ∈ Sn,W ∈ S2n

s.t. −B⊥(AX +XAT + 2αX)B⊥T � 0

− CT⊥(Y A+ATY + 2αY )CT⊥T � 0[
X I
I Y

]
� 0[

X I
I Y

]
W = 0

trace(W ) = 2n− (n+ nc)

0 �W � I
Proof: Problems P0 and P1 both have the same feasible

set with respect to X and Y . Moreover, these consditions do
not depend on W . Hence, to prove the equivalence between
P0 and P1 it suffices with using Lemma 3, which proves the
validity of the rank-constraint representation.

As stated in Theorem 1, problem P0 can be transformed
into a problem, P1, that does not explicitly include the rank
constraint, but has same optimum as the original problem.
This new formulation of the problem can be solved by

standard tools of nonlinear programming such as those
provided by software BARON [21], [19].

IV. FURTHER EXTENSIONS OF THE APPROACH

Similar to Theorem 1 we can also formulate other prob-
lems of interest.

A. Minimization of Controller’s Order

Lemma 3 relates the upper bound of a rank constraint
with the trace of an auxiliary matrix W . This allows the
formulation of a rank minimization problem by maximizing
the trace of W . Thus, the problem of finding the α-stabilizing
controller with minimum order can be formulated as follows
(for a given α)

P2 : min
X,Y ∈Sn,W∈S2n

2n− trace(W )

s.t. −B⊥(AX +XAT + 2αX)B⊥T � 0

− CT⊥(Y A+ATY + 2αY )CT⊥T � 0[
X I
I Y

]
� 0[

X I
I Y

]
W = 0

0 �W � I

Similar rank representations can be found in the literature.
In [17], a representation involving two auxiliary matrices
whose dimensions depend on the rank constraint’s bound r
is proposed. Due to the dependence of the auxiliary matrices
dimensions with the rank bound, it is not plausible to use the
representation in [17] to state problem P2.

In [20], the reduced order controller is obtained by an
iterative approach that minimizes the rank of a matrix. This
approach however only assures local convergence, while the
representation applied in this paper has same global optimum
as the original problem and can be obtain utilizing nonlinear
programming techniques.

Remark 1: It is important to note that when implementing
problem P2 a stop mechanism must be incorporated. Suppose
that for a given system, the minimum order possible for
a stabilizing controller is nc. Problem P2 is defined as a
minimization problem, thus it will not stop once found a
controller of order nc, in fact it will continue searching in the
infinite set of controllers, trying to find one of even smaller
order. To fix this issue, we add a time constraint while solving
P2 with the global optimization software BARON. Other
authors such as [20] set a lower bound for the achieved
controller’s order which can be compared in each step of
their iterative rank minimization approach.

B. Optimizing for controller order and α-stabilizing degree

Feasibility problem P0 stated before can be extended
into a maximization problem, where the biggest value for
parameter α is to be found (α is treated as a variable). Thus
by maximizing α and maintaining the rank constraint, the
resulting pair of matrices (X,Y ) can be used to obtain the



fastest stabilizing controller of order nc. This leads into the
following optimization problem

P3 : max
α∈R>0,X,Y ∈Sn,W∈S2n

α

s.t. −B⊥(AX +XAT + 2αX)B⊥T � 0

− CT⊥(Y A+ATY + 2αY )CT⊥T � 0[
X I
I Y

]
� 0[

X I
I Y

]
W = 0

trace(W ) = 2n− (n+ nc)

0 �W � I

The flexibility of the approach presented in this paper
can be also used to another where the stability degree and
controller order are optimize at the same time by imposing
a trade-off between them:

P4 : min
α∈R>0,X,Y ∈Sn,W∈S2n

trace(W )− α

s.t. −B⊥(AX +XAT + 2αX)B⊥T � 0

− CT⊥(Y A+ATY + 2αY )CT⊥T � 0[
X I
I Y

]
� 0[

X I
I Y

]
W = 0

0 �W � I

This problems are currently been studied in order to
understand their solution space.

V. NUMERICAL COMPARISON

In this section we carry numerical examples in order to
compare the performance and effectiveness of the approach.

We consider the reduced order feedback control problem
used in [12] and [18]. The system has the following state-
space matrices

A =


0 0 1 0
0 0 0 1
−1 1 0 0
1 −1 0 0

 , B =


0
0
1
0

 , C =


0
1
0
0


T

A. α-stabilizing Controller

First, we search for α-stabilizing controllers of order nc =
2 for given values of α (which imposes a lower bound for
the stabilization degree). In Table I, the resulting stability
degree α̂ of the closed loop system is shown. Note that
that since we are solving a feasibility problem it is possible
to obtain a closed loop with greater stabilizing degree. We
use three different approaches to solve P0: i) the approach
presented in Orsi et. al. [18], ii) the approach in Sun et. al.
[20] and iii) the one proposed in this paper. We constrain
the computation-time and maximum number of iterations
to compare the different approaches. Orsi’s approach was
limited to 20000 iterations while Sun’s and our approach
was limited to a 500[s] computation time.

TABLE I
ACHIEVED CLOSED LOOP α-STABILITY SOLVING P1

Orsi et. al. Sun et. al. Equivalent Representation

α α̂ T [s] α̂ T [s] α̂ T [s]

0.2 0.203 1.4 0.2 2.4 0.305 151.2
0.42 0.420 3.0 - - 0.506 440.8
0.46 0.467 172.2 - - 0.521 380.3
0.5 - - - - 0.500 125.4

0.502 - - - - 0.529 451.7

Although our approach takes more time than the one
shown in [18], we are able of finding controllers that result
in a better closed loop stability degree α̂, or that others could
not find. This is due to the nonlinear programming technique
that the solver utilizes. Given that the goal is to find a static
controller K, the solution time of the approach is not of
much relevance1. Note that the closed loop stability degree
obtained is not necessarily the same as the required, and in
some cases is far greater. This shows that the solver doesn’t
work in an iterative way (improving some parameter at each
step), which might lead to local minimum.

Although the equivalent representation for rank constraints
allows us to use nonlinear programming techniques, the
problem is still computationally demanding. Complexity
and computational load might increase for some particular
problems. This is seen for example when solving P0 for
higher closed loop stability degree (i.e. increasing α).

B. Reducing controller order

Next we solve problem P2, where the objective is to
minimize the controller’s order for a user specified stabilizing
degree α. Considering Remark 1 we add a time constraint
into the solver of tmax = 300[s]. In Table II are shown the
results such as achieved controller order n̂c and correspon-
dent closed loop stabilizing degree.

TABLE II
CONTROLLER’S ORDER nc FOR GIVEN STABILIZING DEGREE α,

SOLUTION TIME tmax = 300[s]

α n̂c α̂

0.1 2 0.105
0.2 3 0.221
0.5 3 0.786
0.7 3 0.786
1 3 1.378

We note that in relatively the same time used for examples
for problem P1 we have achieved a better closed loop
stabilizing degree.

1Note that, if time is a constraint, a suboptimal solution could be obtained
by stopping the optimization procedure or by using local optimization
procedure.



VI. CONCLUSIONS AND FUTURE WORK

In this paper we address the problem of designing a
reduced order feedback control. We incorporate rank con-
straints in order to restrict the order of the unknown con-
troller through an optimization problem. The resulting opti-
mization framework gives us the possibility of formulating
additional rank constrained problems for control design.
We apply an equivalent rank constraint representation to
reformulate the problem into another one that is equivalent
in a global optimum sense. The resulting (global optimum-
equivalent) problem can be solved by using nonlinear pro-
gramming techniques. We also formulate two additional
extensions of the original reduced order control problem:
1) maximization of the stability degree, given a controller’s
order, 2) given a certain stability degree, minimize the order
of the controller. This shows the versatility of the rank
constraint representation to solve different control design
problems. Finally numerical examples are shown in order
to illustrate the performance of the proposed method.
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